27 research outputs found

    Novel recombinant mycobacterium bovis BCG, ovine atadenovirus, and modified vaccinia virus ankara vaccines combine to induce robust human immunodeficiency virus-specific CD4 and CD8 T-cell responses in rhesus macaques

    Get PDF
    Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p

    Vaccine Risk And Benefit In The Developing World

    No full text

    Safety and Immunogenicity of Novel Recombinant BCG and Modified Vaccinia Virus Ankara Vaccines in Neonate Rhesus Macaques â–¿

    No full text
    Although major inroads into making antiretroviral therapy available in resource-poor countries have been made, there is an urgent need for an effective vaccine administered shortly after birth, which would protect infants from acquiring human immunodeficiency virus type 1 (HIV-1) through breast-feeding. Bacillus Calmette-Guérin (BCG) is given to most infants at birth, and its recombinant form could be used to prime HIV-1-specific responses for a later boost by heterologous vectors delivering the same HIV-1-derived immunogen. Here, two groups of neonate Indian rhesus macaques were immunized with either novel candidate vaccine BCG.HIVA401 or its parental strain AERAS-401, followed by two doses of recombinant modified vaccinia virus Ankara MVA.HIVA. The HIVA immunogen is derived from African clade A HIV-1. All vaccines were safe, giving local reactions consistent with the expected response at the injection site. No systemic adverse events or gross abnormality was seen at necropsy. Both AERAS-401 and BCG.HIVA401 induced high frequencies of BCG-specific IFN-γ-secreting lymphocytes that declined over 23 weeks, but the latter failed to induce detectable HIV-1-specific IFN-γ responses. MVA.HIVA elicited HIV-1-specific IFN-γ responses in all eight animals, but, except for one animal, these responses were weak. The HIV-1-specific responses induced in infants were lower compared to historic data generated by the two HIVA vaccines in adult animals but similar to other recombinant poxviruses tested in this model. This is the first time these vaccines were tested in newborn monkeys. These results inform further infant vaccine development and provide comparative data for two human infant vaccine trials of MVA.HIVA

    Novel Recombinant Mycobacterium bovis BCG, Ovine Atadenovirus, and Modified Vaccinia Virus Ankara Vaccines Combine To Induce Robust Human Immunodeficiency Virus-Specific CD4 and CD8 T-Cell Responses in Rhesus Macaquesâ–¿

    Get PDF
    Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration

    Protective Immune Responses to a Recombinant Adenovirus Type 35 Tuberculosis Vaccine in Two Mouse Strains: CD4 and CD8 T-Cell Epitope Mapping and Role of Gamma Interferonâ–¿

    No full text
    There is an urgent need for an efficacious vaccine against tuberculosis (TB). Cellular immune responses are key to an effective protective response against TB. Recombinant adenovirus (rAd) vectors are especially suited to the induction of strong T-cell immunity and thus represent promising vaccine vehicles for the prevention of TB. We have previously reported on rAd vector serotype 35, the serotype of choice due to low preexisting immunity worldwide, which expresses a unique fusion protein of Mycobacterium tuberculosis antigens Ag85A, Ag85B, and TB10.4 (Ad35-TBS). Here, we demonstrate that Ad35-TBS confers protection against M. tuberculosis when administered to mice through either an intranasal or an intramuscular route. Histological evaluation of lung tissue corroborated the protection and, in addition, demonstrated differences between two mouse strains, with diffuse inflammation in BALB/c mice and distinct granuloma formation in C57BL/6 mice. Epitope mapping analysis in these mouse strains showed that the major T-cell epitopes are conserved in the artificial fusion protein, while three novel CD8 peptides were discovered. Using a defined set of T-cell epitopes, we reveal differences between the two mouse strains in the type of protective immune response, demonstrating that different antigen-specific gamma interferon (IFN-γ)-producing T cells can provide protection against M. tuberculosis challenge. While in BALB/c (H-2d) mice, a dominant CD8 T-cell response was detected, in C57BL/6 (H-2b) mice, more balanced CD4/CD8 T-cell responses were observed, with a more pronounced CD4 response in the lungs. These results unify conflicting reports on the relative importance of CD4 versus CD8 T-cell responses in protection and emphasize the key role of IFN-γ
    corecore